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4. Rationale:  

 

Diabetes is an established risk factor for micro- and macrovascular complications, 

including chronic kidney disease (CKD) and end-stage renal disease (ESRD), coronary 

heart disease (CHD), stroke, heart failure, and mortality.
1–5

 Diabetes is currently 

considered a “CHD risk equivalent”,
6
 which implies that all persons with diabetes are in a 

high-risk category similar to those persons who have a history of CHD. However, recent 

evidence suggests that persons with diabetes may have varying degrees of risk depending 

on the presence and severity of other risk factors and co-morbidities, and that HbA1c and 

other biomarkers not included in traditional cardiovascular risk equations may potentially 

inform this risk.
7
 Aggressive treatment of hyperglycemia and other cardiovascular risk 

factors such as hypertension may not benefit all individuals equally and is associated with 

adverse events (e.g., hypoglycemia and hypotension). It is crucial to distinguish between 

persons who will and will not benefit from such aggressive treatment. Risk prediction 

equations can identify those individuals at high risk for certain outcomes and may have 

utility to inform certain treatment interventions. 

 

Risk prediction models for microvascular and macrovascular complications are of clinical 

interest. Several models have been developed to predict ESRD in persons with diabetes 

complicated by CKD,
8–10

 as well as in persons with diabetes who do not have kidney 

disease.
11,12

 Many more risk prediction models have been developed for macrovascular 

complications. Risk scores for CVD developed in the general population have tended to 

underestimate risk when applied to persons with diabetes.
13,14

 To improve predictive 

accuracy, several risk scores for CVD have been developed in persons with diabetes.
15–22

 

A risk score for CHD was previously developed in ARIC in persons with diabetes, but 

this model was never externally validated, nor did it include HbA1c or nontraditional 

markers of hyperglycemia, cardiac damage, kidney function, inflammation or liver 

function.
18

  

 

Whereas there is some evidence that scores developed in persons with diabetes may 

better discriminate risk compared to those developed in the general population,
23

 many of 

these have still been problematic when applied to external populations of persons with 

diabetes. First, many have not been able to accurately predict risk in external 

populations.
24

 For instance, the well-known United Kingdom Prospective Diabetes Study 

(UKPDS) risk engine, which is a risk prediction tool for CHD and stroke in persons with 

diabetes,
15,20

 has been shown to greatly overestimate risk (by up to 5 fold) in external 

populations, which could lead to unnecessary treatment in persons with diabetes.
25

 

Second, most of these risk scores have been developed in white European populations,
13

 

which may limit their generalizability. Third, having to use multiple risk scores to predict 

risk of diabetes complications is burdensome for practitioners,
26,27

 whereas a risk 

prediction tool that comprehensively predicts risk of multiple diabetes complications may 

be convenient for clinical use. A recent paper developed a risk prediction model for 

multiple endpoints that included micro- and macrovascular complications in a Japanese 

population, and found that combining these outcomes improved classification of persons 

into low- and high-risk groups.
28

 Fourth, most of these risk scores have not incorporated 

the use of nontraditional markers of hyperglycemia, cardiac damage, kidney function, 



 

inflammation or markers of liver function,
13

 which have been associated with increased 

risk of complications in persons with diabetes.
8–12,29,30

  

 

 

5. Main Hypothesis/Study Questions: 

 

Aim: To develop and internally validate a comprehensive risk prediction equation for 10-

year risk of key micro- and macro-vascular complications and death in persons with 

diabetes using demographic and clinical information and a panel of traditional and 

nontraditional markers of hyperglycemia, cardiac damage, kidney function, 

inflammation, and liver function. 

 

Hypothesis: The addition of traditional and nontraditional biomarkers improves the 

prognostic ability of the risk prediction equations compared to non-laboratory markers 

alone. 

 

6. Design and analysis (study design, inclusion/exclusion, outcome and other 

variables of interest with specific reference to the time of their collection, summary 

of data analysis, and any anticipated methodologic limitations or challenges if 

present). 

 

Study population 

 

We will include ARIC participants with diabetes at visit 2 (defined by self-reported 

diagnosis or medication use), excluding those with prevalent CVD or reduced kidney 

function (N~800). Prevalent CVD will be defined using self-reported history of CHD, 

stroke or heart failure at visits 1 or 2, or hospitalization for any of these events prior to 

visit 2. Prevalent reduced kidney function will be defined using creatinine-based 

estimated glomerular filtration rate <60 mL/min/1.73 m
2
 at visit 2. We will further 

exclude non-black and non-white participants, as well as black participants from 

Minneapolis or Washington County, due to small numbers, as well as persons who are 

missing key covariates.  

 

 

Demographic and clinical measurements 

 

Models will include age, sex and race-center. We may additionally include the following 

variables during model development (described later): duration of diabetes, family 

history of CVD, education level, alcohol consumption, smoking status, physical activity 

(Baecke sport activity index), systolic blood pressure, diastolic blood pressure, 

antihypertensive medication use, cholesterol-lowering medication use, low-density 

lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol, body mass 

index and waist circumference. 

 

 

 



 

Laboratory measurements 

 

We will consider inclusion of both traditional and nontraditional laboratory markers of 

hyperglycemia, kidney function, cardiac damage, inflammation and liver function during 

model development. These will include: 

 

 Traditional Nontraditional 

Hyperglycemia 
Fasting glucose, 

HbA1c 

Fructosamine, Glycated albumin, 1,5-

anhydroglucitol 

Kidney function Creatinine ß-2 microglobulin, Cystatin C 

Cardiac damage -- hs-cTnT, NT-proBNP 

Liver function ALT, AST GGT 

Inflammation -- hs-CRP 

 

Outcomes  

 

Microvascular and macrovascular events and all-cause mortality are ascertained via 

continuous surveillance of hospitalizations and death certificates, annual telephone 

follow-up with the participant or a proxy, and linkage with the National Death Index. 

CHD will be defined as a first occurrence of either adjudicated hospitalization for 

definite/probable myocardial infarction or CHD death.
31

 Incident stroke will be defined 

as a first occurrence of adjudicated hospitalization or definite/probable ischemic stroke 

death.
32

 Incident heart failure will be defined as a first occurrence of either hospitalization 

with a discharge code of 428 in any position for diagnosis using the International 

Classification of Diseases, 9
th

 Revision (ICD-9) or heart failure death, based on a 428 

ICD-9 code or an ICD, 10
th

 Revision (ICD-10) code of 150.
33

 Incident CKD will be 

defined as eGFR<60 mL/min/1.73 m
2
 and ≥25% decline in eGFR since visit 2, or 

hospitalization due to kidney disease, kidney transplant or dialysis or death due to kidney 

disease. 

 

 

Statistical analysis 

 

We will use a 3-level approach for model development: 1) including non-laboratory 

demographic and clinical characteristics; and adding 2) traditional markers and 3) 

nontraditional markers of hyperglycemia, cardiac damage, kidney function, inflammation 

and liver function alone and in combination with one another.  

 

We will conduct analyses using standard Cox proportional hazards models with a 

combined endpoint (so modeling time to first of any event) or using cause-specific 

proportional hazards models for comparison. The cause-specific hazards model censors 

persons with the competing event(s), just as in standard survival analysis. However, the 

absolute risk (cumulative incidence) is calculated differently.
34

 We may also compare 

results using a competing risk framework by fitting a proportional hazards model for the 

subdistribution (or Fine and Gray model). Standard survival analysis, including the 

Kaplan-Meier method and Cox proportional hazards regression, overestimates 



 

cumulative incidence when competing risks are present, especially when the competing 

risks are strong, such as in the setting of diabetes. These approaches may therefore affect 

the calibration of the risk prediction model, more so than the discrimination.
34,35

 

Therefore, the Fine and Gray method may more accurately assess both discrimination and 

calibration, since accurate determination of absolute risk is vital for clinical prognosis 

and treatment decisions.  

 

To visually assess the discrimination of the model, we will create histograms of the 

predicted risk in events and non-events, separately. We will use the following measures 

of discrimination to assess incremental improvements in prediction: 1) the Harrell’s c-

statistic, which accounts for censoring in survival analysis; 2) the overall net 

reclassification improvement (NRI) to quantify upward and downward reclassification, as 

well as the event and nonevent NRI separately, in order to determine the amount and 

direction of reclassification separately in people who do and do not experience an event; 

and 3) the integrated discrimination improvement (IDI) and relative IDI to assess the 

improvement in average sensitivity.
36–42

 

 

We will assess the calibration of the model using: 1) extensions of the Hosmer-

Lemeshow goodness of fit test for survival data; and 2) calibration curves for competing 

risks models.
43

 Additionally, we will create risk distribution plots, which display the 

distribution of risks calculated from each model in the overall study population, as well 

as in events and non-events, separately. These plots allow visualization of the proportion 

of individuals classified as low versus high risk.
44

 We will plot risk predictiveness curves 

(risk percentile across the X-axis and the predicted risk along the Y-axis) and overlay the 

observed proportions of the outcome of interest at the midpoint of each risk decile, which 

will graphically complement the Hosmer-Lemeshow goodness of fit test.
41

  

 

We will internally validate the risk prediction equation using bootstrapping methods to 

obtain an estimate of the optimism-corrected c-statistic, which is a better estimate of the 

expected predictive accuracy from external validation.
45,46

 We will have already 

calculated the c-statistic of the model developed in the original sample (capp). We will 

then sample with replacement to create 200 bootstrapped samples of the same size as the 

original data set and develop a model in each of the bootstrapped samples. To calculate 

the optimism in each bootstrapped sample, we can find the difference in the c-statistic of 

the model applied to the bootstrapped sample (cboot) and applied to the original sample 

(corig). The average optimism can then be calculated as the sum of the optimisms from 

each bootstrapped sample divided by the number of bootstrapped samples. Lastly, the 

optimism-corrected c-statistic is the difference of the c-statistic from the original model 

applied to the original sample and the average optimism. Compared to the more common 

method of splitting the data into training and validation data sets, or even cross-validation 

(repeated splitting of the data into training and validation data sets), bootstrapping should 

result in less biased estimates and smaller variance. Additionally, it allows for use of the 

entire data set to develop the model. 

 

 



 

Sensitivity analyses may additionally consider stratification by race and/or duration of 

diabetes.  

 

 

Limitations 

 

We are limited to using a baseline visit at which all proposed analytes were measured. 

Therefore, we have used visit 2 as the baseline. Whereas it would be informative to use 

visit 4 as the baseline, since data are more recent, not all biomarkers of interest were 

assayed using store specimens from that visit (HbA1c, in particular). Nonetheless, our 

results will be informative for developing a useful risk prediction equation. 
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